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CHAPTERI

INTRODUCTION

In recent years interest has grown in the use of

nonstationary random processes for modelling physical

phenomena. This is due to the fact that many physical

phenomena display nonstationary behavior. Currently these

phenomena are generally modelled as stationary because all

aspects of the theory of stationary processes e.g. prediction

and spectral representation are quite well developed [I] and

[7]. However, if these phenomena are to be better understood,

they must be modeled as nonstationary. One aspect which

distinguishes a nonstationary process from a stationary

process is the power spectral density. Nonstationary

processes have a two dimensional spectral representation while

stationary processes have a one dimensional spectral

representation. For nonstationary processes the theory is not

complete, some basic questions such as interpretations of the

spectral representation still need to be investigated.

In this thesis, a two dimensional estimate for the power

spectral density of a nonstationary process will be developed.

The estimate will be applied to helicopter noise data which

is clearly nonstationary. The acoustic pressure from the

1
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isolated main rotor and isolated tail rotor is known to be

periodically correlated (PC) and the combined noise from the

main and tail rotors is assumed to be correlation

autoregressive (CAR). The results of this nonstationary

analysis will be compared with the current method of assuming

that the data is stationary and analyzing it as such. Another

method of analysis is to introduce a random phase shift into

the data as shown by Papoulis [8] to produce a time history

which can then be accurately modeled as stationary. This

method will also be investigated for the helicopter data in

this thesis.

The chapters of this thesis will be outlined as follows:

the remainder of chapter I discusses background material

necessary for understanding the development of this thesis.

Chapter II discusses a method used to determine the period of

a PC process when the period is not known, The period of a

PC process must be known in order to produce an accurate

spectral representation for the process. In chapter III_ the

spectral estimate is actually developed. The bias and

variability of the estimate are also discussed. Finally, in

chapter IV, the current method for analyzing nonstationary

data is compared to that of using a two dimensional spectral

representation. In addition, the method of phase shifting the

data is examined. Conclusions ar_ then made regarding the

comparison of these methods.
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A. Preliminaries and Background

The purpose of this section

definitions and to introduce the

is to

classes

review basic

of stochastic

processes which will be investigated in this thesis.

Definitions

The intent here is to give a review of some fundamental

concepts and definitions of probability theory and stochastic

process theory.

The probability space associated with a random experiment

consists of three items (S,_,P):

I. S is the sample space containing all possible outcomes _.

2. _ is the collection of all events or subsets of S.

3. P is the probability measure defined on _.

A random variable on a probability space (S,_,P) is any

_-measurable function X that usually maps the sample space S

into the real line R (although the function X can take complex

values). Any real random variable X has a distribution

function F x defined by

Fx(a ) = P{_eS: X(_)_), for all _eR.

The distribution function has four basic properties.

i. F x (+_) = 1

2. Fx(-_ ) = 0

3. Fx(_1) S Fx(_2) for _iSa2

4. Fx is continuous from the right, that is lim Fx(_) =
_0

Fx(a0 +) = Fx(_0).
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PxIf it exists, there is also a density function

associated with a random variable X such that

Fx(_) = IPx(7) dT, for all _eR.

The density function px(_)_0 for all _eR.

The moments of a random variable X are defined by

mxk = E(X k) = _ _kpx(_ ) da, k=0,1,2,...,

where k is the order of the moment. The central moments of

X are defined as follows

_xk = E{(X-_) k) = _ (_-_)kPx(_)d_, k=0,1,2,...,

where k is the order of the central moment. Here, the first

order moment mx1=_ is called the mean or expected value. And

the second order central moment is called the variance of X.

A stochastic process or random process is a family of

random variables {X(_,_), _E^}, where A is the index set of

the parameter _. Usually the index set A is either the set

Z = {0,±1,±2,...) of integers in which case the process is

called discrete, or the set R of real numbers, in which case

the process is called continuous. Although the developments

made in this work are for a continuous process, the actual

data used to produce the spectral estimate is discrete, due

to the necessity of sampling.

The moments of a stochastic process are defined similar

to those of a random variable except that they now depend on
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time. The first moment is now called the mean function, and

the second central moment is called the variance function of

the process.

S. Classes of Stochastic Processes

Let X(t) be a stochastic process with a finite second

This relationship

process.

A stochastic

of the

process X(t) is called stationary if

P_(tl,t2) depends only on t2-t I. Therefore,

Rx(tl,t2) = P_(t1+t,t2+t ) for all tl,t2eR

where t is an arbitrary time. Stationary processes are the

most well-known process and have been thoroughly developed,

see for example [i]. In general any process which is not

stationary is called nonstationary. Stationary processes are

a subclass of the following nonstationary processes: PC, CAR,

and harmonizable processes. All stationary processes have

a spectral representation, a fact, which is very useful for

obtaining information about the process.

A process X(t) is called periodically correlated (PC) if

there exists a time T_0 such that

R_(tl,t2) = Rx(t1+T,t2+T ) for all tl,t2eR.

The smallest such T is called period of the process. A class

of processes called correlation autoregressive (CAR) was

introduced by Miamee and Hardin in [5] and [3]. CAR processes

moment whose mean is zero and let

Rx (tl, t2) =E (X (tl) X (t2) }.

is called the autocorrelation
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are defined to be those processes for which there exist

finitely many scalars aj such that

Rx(tl,t2) = Z aj R(tI+Yj,t2+Yj), for all tl,t2ER
J

where the Yj's are fixed times.

A random process X(t) is called harmonizable if the

double Fourier transform of its autocorrelation exists. That

is

_ -i (_it1-_2t2)

(I) Sx(_i,_2) = I/4_ 2 f dt I I dt 2 Rx(tl,t2) e .
--OO --O0

If this is the case, then Sx(w1,_z) is called the power

spectral density of the process X(t). All of the above

classes of processes have some members which are harmonizable

(see Figure i). For a stationary process, replacing R(tl,t2)

by R(t2-tl) and substituting t2-t I by [ allows (I) to simplify

to

Sx(_1,w2) = Sx( (_i+_2)/2}6(w2-_ I)

where 6(') is the Dirac delta function, and

oo -i_T

Sx¢_) = I/2r I P_(_)e dT,
--00

is a one dimensional spectral density. This relationship will

be developed in more detail in chapter III.



CHAPTERII

DETERMINING THE PERIOD OF A PC PROCESS

In practice, one usually starts with a finite amount of

discrete data. This data is generally taken with respect to

time. According to Fourier analysis, a time history can be

decomposed into sinusoids of different frequencies. It is

this decomposition that we would like to use in order to

produce an estimate of the power spectral density of a

process.

The Fourier transform of discrete data can be produced

by using a computer program which can be found in the library

of most operating systems. The discrete Fourier transform of

a vector of sampled data (Xn, n=0,1,...,N-l}, where N is the

number of samples taken can be written as

N-I

Xk = _ Xn e(12_kn/N),

n=0

and (Xk, k=0,1,...,N-l} goes from zero frequency to 2_/At by

intervals of length 2_/NAt where At is the time between

samples.

Thus, the transformed data has the same length as the

original data. Also it is given with respect to frequencies

which go from the zero frequency to some maximum frequency in
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equal intervals. It is this characteristic of the transformed

data taking values at frequencies of equal intervals which is

of concern when one is trying to produce the spectrum of a PC

process.

There is also a cutoff frequency

_c = _/At,

which is the highest frequency that can be reproduced from

data sampled at equal intervals At. This frequency is called

the Nyquist frequency _c- This phenomenon can be understood

mathematically by taking a sinusoid X(t)=Acos_it of frequency

_i=_c+_2 where _2<_c. Then discretizing

X(nat) = A cos_inAt
= A cos(_ c + _2)nAt
= A COS(_¢nAt + _2nAt)
= A cos(_n + _znAt)
= A(cos_n COS_2nAt - sin_n sin_2nAt)
= A cos(n_ - _2nAt)
= A cos(_ c - _2) nAt = A COS_anAt

where _a=_¢-_2. Therefore, the frequency _i=_c+_2 is

indistinguishable for sampled data from the frequency

_a=_c-_2. For this reason, when analyzing sampled data, Xk,

k=0,1,...,N/2 will be used corresponding to frequencies from

zero to _/At.

In this thesis, the discrete data used was taken from an

acoustic time history produced by a helicopter fixed with

respect to the observer. The passing blades from an isolated

main rotor or isolated tail rotor will produce a periodic

sound pressure time history. This time history will have the
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same period as that of the passing blades which produce them.

The history produced by the main or tail rotor rotating

alonethus represents a PC process whose correlation has the

same period as the time history. Recall that a periodically

correlated process is a process whose correlation is a

periodic function. Therefore, its correlation has a period

T and a frequency f associated with it, and it is this period

that one must find, first.

By definition, a function F(x) is called periodic if

there is a positive number T such that F(x)=F(x+T) for all x.

The smallest such T is called the period. The reciprocal of

called the fundamental frequency f0 of thethe period is

function, i.e.
f0= 1 .

T

Frequency corresponds to the number of cycles per second and

has units in hertz. Frequency can also be viewed in terms of

radian frequency _ which has units of radians per second and

is related to f by

_=2_f.

The Fourier transform of discrete data taken from a

periodic time history should only have values at frequencies

corresponding to the fundamental frequency and integer

multiples of the fundamental frequency [2]. However, due to

the nature of the transform program, values are given for the

transformed data at frequencies of equal intervals. The

location of these frequencies will depend on the length of the

original input data to the program. Therefore, in order to
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avoid having values at frequencies at which there should be

zero values, data must be input to the program of lengths

equal to the period or some integer multiple of the period for

a PC process [2].

In this chapter, a method will be examined for

determining the period of a periodically correlated process

from given data. The method entails finding the lines of

support for the PC process and then to use the distance

between these lines to determine the period of the process.

Spectral Support

Hurd [4] introduces a technique which is useful for

determining the support of a nonstationary process. The

technique consists of producing the discrete Fourier transform

Xk from sampled data of a nonstationary process. Products of

transforms, Xp Xq, are then plotted in the p,q plane. Subsets

of these products are then summed along diagonals and

normalized with respect to the main diagonal. That is, a

spectral coherence is produced at coordinates (p,q) where p

and q correspond to the 2_p/NAt and 2_q/NAt frequencies

respectively. The coherence is produced by

IT (p,q,M)1 2

M-I

I Z Xp_ Xq_ I
m=0

M-I M-I

zl%q 12
m=0 m=0

This coherence is used to determine which points over the

array being considered have significant values. This is
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determined by choosing a threshold value and plotting points

(p,q) for which the coherence exceeds the threshold. If the

process is PC, the ploted points (p,q) should produce a graph

(Figure 5) of dots along parallel diagonal lines. The

separation between these diagonals can be used to determine

whether the process is PC, and to find the period.

This technique is based on the theoretical result that

the spectral support for a PC process with period T is on

equidistant straight lines parallel to the main diagonal [5].

That is Dk lines where

Dk = { (p,q) : p=q+2___kk),
T

k=0,_+l,..., + (T-l).

Taking the case where k=l, the spacing of these lines is given

by

p-q = 2JE_
T

and letting T=n_t, produces

p-q = 2_
nat.

The difference p-q is found from the graph. Thus the number

n of time intervals At needed to produce the period of the

process can be calculated directly. After the period has been

found, our next task is to estimate the power spectral

density.



CHAPTERIII

A POWERSPECTRALESTIMATION TECHNIQUE

We will first consider the usual requirements which are
A

placed on an estimate. For a random variable _ which is an

estimate of an unknown parameter I, a usual requirement is

that

A

E(1) = l,

where the expectation is over all possible values of the

random variable. When this is the case, the estimate is said

to be unbiased. In addition, an estimate is chosen such that

its variation about its mean is as small as possible. This

uncertainty of an estimate is measured by the standard

deviation. That is,

A A

Uncertainty = (E([_-E(_) ]2})Ij2.

Therefore, the usual requirements are that the estimate be

unbiased and have the smallest possible uncertainty.

For stationary processes, there are two well known

techniques for spectral estimation which are the Blackman -

Tukey and the finite Fourier transform techniques. To

produce an estimate for the power spectral density, we have

chosen the finite Fourier transform technique. This method

consists of taking the discrete Fourier transform of sampled

12
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data and using the transformed data to produce a spectral

estimate. Consider a stationary process X(t) of which the

(generalized) Fourier transform is given as

-i_t

X(_)= _!_1 I X(t) e at
27r -_

since x(_) is complex, its autocorrelation is given as

E (X(_I) X* (_2)) =

00 O0

1 f dt I f dt 2 R_(t2-tl)e
4 _-2 __ __

-i (_itl-wzt2)

where the asterisk indicates a complex conjugate. Introducing

the change of variables

t = t I + t 2 and r=t 2 - t I
2

produces

m

E (X(_i)X* (_2)) =
oo i (_+_) 7/2

1 I d_ R_(_)e
2_ -oo

-i(_-_) t

X_/__l I dt e
2_ -_

= sx{(_i+_2)/2} 6(_I-_2)

Therefore,

O0

Sx(_ ) = I E[X-(_)X*(_')]d_'
--00

In practical situations only a single sample function of

length T of a random process X(t) is available. Based on the

above relationship just obtained, a class of power spectral

estimates

A

sx(_) = wsJ_f(_)J2

is introduced where
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-i_t

X_(_) = _!_1 I n(t)X(t)e at

27 -_

is the Fourier transform of the data as seen through a data

window n(t). This data window is a real valued function that

is zero for t<0 and t>T, so that unavailable data are not

required. And W_ is a correction factor, due to the presence

of the window.

A

The estimate Sx(_ ) for a fixed _ is a random variable

with mean

^ _ _ -i_(tl-t2)

E{Sx(_)) = Ws I dtl I at2 n(tl)n(tz) _(t2-tl)e
4_-_ -_

Furthermore,

^ co

E(Sx(w) } = _!_i _ W s_
27 -_ 27

n(t+[/2)n(t-T/2)dt Rx([) e
--00

with t1=t-[/2 and t2=t+T/2. Here

o0

u(_) = Ws_ f n(t+T/2)n(t-r/2)dt
2_ -_

is a lag window u(r) satisfying the following conditions:

i. u(0) = I, for preserving power

A

2. u(_) = U(-7) which makes Sx(_ ) real

3. u([) = 0 for ITI<T

For the first condition,

dT

co

U(0) = Ws_ I n2(t) dt=l

27 -_

yields
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Ws = 2
00

I n2(t) dt •
--00

Therefore, the estimate becomes

A

Sx( )= Ix  J_L_
O0

I n2(t) dt
--00

The second condition, u(r) being even, is obviously satisfied

while the third condition is also satisfied since u(t) is the

convolution of two data windows that are only nonzero in the

range (0,T).

The estimate developed above are equivalent in

expectation to a class of estimates developed by Blackman and

Tukey in which

^ _ ^ -i_r

Sx(m) = __!_I fu(r)Rx(r)e dr
2_ -_

^

where Rx(r ) is an estimate of the autocorrelation function of

the process and u(r) is a lag window as described above. The

expectation of this estimate is

^ oo -i_r

E(Sx(w)) = _!_1 fu(r)Rx(r)e dr.
2_ -_

This mean spectral estimate can be shown to equal the

convolution of the actual spectral density with a "spectral

window" which is merely the Fourier transform of the lag

window. Since the autocorrelation is an even function, it can

be seen that
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^ 00

E(Sx(w)) = _!_i fu(_)Rx(r)coswrd_

2_ 0

00

= sx(_) - _5_1 /P_(_)cos_vdr
2_ T

for the case of a "boxcar" lag window, u(r)=l. Therefore, the

estimate for the power spectral density is biased, but it

becomes unbiased as T _ _. In a similar fashion to the first

technique, we suggest the following technique for estimating

the two dimensional power spectral density of a nonstationary

process. The power spectral density for a nonstationary

process can be written as

_ -i (_it1-_2t2)

Sx(wl,w2) = 1 f dt I f dt 2 P_(tl,tz)e
--00 --00

= E(X(_I)X*(_2) },

where

X(w) = _!_1 _ X(t)e-i_tdt.

2ff -_

Here Sx(w1,_2) can not be simplified to Sx(_), since the

autocorrelation Rx(tl,t2) depends on both variables t I and t 2.

Therefore, from a sample function of length T of a

nonstationary process X(t), a class of power spectral

estimates

A

Sx (_I,_2)=w, _f (_)-x_* (_2)

can be introduced where

-iwt

Xf(w) = 1 _ n(t) X(t)e dt
2_ -_
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is the Fourier transform of the data as seen through a window

function n(t) as in the stationary case.

The mean of the estimate is

^ _ _ -i (_it1-_zt2)
E(Sx(_1,_z) )= _- fdtl Idt2 n(tl)n(t2)Rx(tl,tz)e

4_ -_ -_

The above analysis for the estimate being biased on _1=_z in

the stationary case can be seen to hold when _i is not equal

to _2.

It can be shown [2], that the spectral estimate of the

finite Fourier transform approach, in the stationary case, is

essentially a chi-square random variable with two degrees of

freedom. Therefore, variability of the estimate can be

reduced by breaking the estimate into N B blocks of

A

length T B such that NBTB=T. A spectral estimate Sxj(_ ) for

j=I,2,...,N_ will then be taken over each block. If the

blocks are assumed to be independent, the average of the block

estimates

N B ^

sx(_) = _1_I z sxj(_)
N B j=l

is essentially a chi-square random variable with K=2N B degrees

of freedom. It can be shown with a graph of the variation of

a chi-square random variable (Figure 2) where a(k) is the left

bound and b(k) is the right bound that

P{Sx(_)/a(k) > Sx(_) > Sx(_)/b(k)) = 0.80 .

Therefore, 80 percent of the time the actual spectral density

will lie between i/a(k) and i/b(k) times the spectral
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estimate.

The variability of such estimates is intimately linked

to their resolution. Full resolution refers to two sinusoids

of the same amplitude being completely distinguishable when

viewed through the spectral window function in the frequency

domain. For the finite Fourier transform technique, full

resolution requires that frequencies be roughly separated by

A_ = 2_/T or Af = I/T.

Now by breaking the data into NB blocks, the effective length

has changed from T to TB.

decreases to

Since, K=2NB=2T/TB

Thus, the bandwidth of the estimate

Af = I/T B

K=2AfT

which shows the tradeoff between variability and frequency

resolution.

The estimate in the stationary case
A

sx( ) =

is essentially a chi-square random variable. Although it is

not a chi-square random variable, the estimate for the PC

process
A

sx( 1, = wsx *

similarly reduces in variability, when the process is blocked

in integer multiples n of the period. That is,

T B =np

where p is the period of the PC process.



CHAPTERIV

SPECTRALANALYSIS OF HELICOPTER NOISE

We will first examine the correlation of the acoustic

pressure time history Xn from an isolated helicopter rotor.

Xn represents a discrete process which reflects the fact that

the time history is sampled at discrete intervals. It is this

sampled data which is used to produce a spectral estimate.

This time history is doubly periodically correlated (DPC).

That is

R(m,n) = EXmXn*

is periodic in both m and n. Therefore, its correlation

function being periodic in m can be written as

T-I

(*) R(m,n) = _ Rk(n)e 2"i_/T , for all m
k=0

And since R(m,n) is also periodic in n, we can write

R(m,n+T) = R(m,n).

Therefore,

T-I T-I

7. Rk(n)e 2_i_/T = _ Rk(n+T)e 2_imk/T , for all m,n

k=0 k=0

For a fixed n we have

T-I

T. [Rk(n+T ) -Rk(n ) ] e2"Imk/T = 0 ,

k=0

which implies that

19

for all m



Rk(n+T ) = Rk(n ) , for all k

And since n was arbitrary, Rk(n) is periodic for each k.

Therefore, we can write

2O

T-I
a e -2_nj/TR k (n) = _ kj

j=0

Substituting into (*) we get

T-I T-I
e-2_injlT e2_imk/TR(m,n) = T. [ _. _kj ] "

k=0 j=0

Hence

T-I T-I

e2_i(mk+nj )/TR(m,n) = _. Z _kj

k=0 j=0

This means that the spectrum of a DPC process is supported on

T 2 points ((2_k/T,2_j/T): j,k = 0,1,...,T-I) (Figure 3).

Now we can try to get a representation for the process

X n. We must first utilize the fact that the matrix akj is

positive definite. To do this we must show that

DAD* -- _ dkakjd j > 0
k,j

for each vector D=(d0,dl,...,d__1) £ C T. Let (C0,Cl,...,CT-I) be

a vector in C _ such that

T-I

C n e 2"inklT = dk,

n=0

for every k=0,1,...,T-l.

This is possible by Fourier theory. Now we can write

T-I T-I T-I T-I

Z d k akj dj* = _ (Y. Cm e2"imk/T) akj (_ C n e2"inj/T) *

k,j=0 k,j=0 m=0 n=0

T-I T-I T-I

= _q. _ Cm (_. C[kJ_A2_i(mk-nj)/T_) Cn _

m=0 n=0 k,j=0
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T-I T-I
= _ 7. cmR(m,n)Cn*

m=0 n=0

T-I T-I

E{(Z CnXn)(E c,,Xn)*)

m=0 m=0

T-I

= n z CnX n 112 >- 0 Q.E.D.

n=O

Since akj has been shown to be positive definite, we know there

is a vector (Y0,Yl,..-,Y_-I) of Gaussian random variables with

mean (0,0,...,0) and covariance matrix (akj). SO

akj = E(ykyj* ) for every k,j = 0,1,...,T-I.

Therefore, we can write (4.2) as

T-I T-I

Rx(m,n ) = 7. 7. E(ykyj)e 2_i(km-jn)/T

k=0 j=0

T-I T-I

= E( (Z ez"i_/T Yk)( Zez"inj/T Yj)*}

k=0 j =0

This means that

or

T-I

X n = Z e2"ink/T Yk,

k=0

for every n=0,±l,±2,...

Xn = Y0 + Yl e2_In/T + Y2 e(2)2"in/T +" • "+YT-Ie(T-I)2_in/T"

Therefore,

X n = Xn+ T .

And since X n is periodic, prediction is easy once the period

of the process is known.

The object of this thesis has been to develop a technique

for analyzing helicopter noise in a more exact way. The
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standard approach is to treat the data as if it were

stationary and to produce a one dimensional spectrum from

which the data will be analyzed. In actuality the data

produced from the isolated tail rotor and isolated main rotor

is periodically correlated which requires a two-dimensional

spectrum to completely represent the spectrum of the data.

Further the data from the main and tail rotor combination is

basically the sum of two incommensurate periodic components

which means that this data is neither periodic nor stationary.

Hence, this data also requires a two dimensional spectrum.

In trying to develop a technique to analyze helicopter

noise the necessity for the spectrum to be two-dimensional is

utilized. As discussed in chapter 3, an estimate was

developed for the power spectrum of a nonstationary process.

And it was this estimate that was used to produce two

dimensional spectral estimates from the data. The technique

consists of estimating the spectrum over a region of values

for _i and _2 and then block averaging the estimate to reduce

variability. In the case of the isolated main and tail rotors

blocking was done as a multiple of the period of process.

This was done because of the characteristics of a periodic

process. A periodic process has an amplitude spectrum as

discussed above with support only on lattice points. And to

insure that these points are actually viewed, a length of data

which is a multiple of the period of the process must be used

when the data is Fourier transformed.
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The data used to produce the spectral estimates in this

thesis was taken from a wind tunnel test conducted at

NASA/Langley. The Sikorsky Aircraft's Basic Model Test Rig

was used in the experiment details of which can be found in

[6]. The data was taken from several locations around the

helicopter model (see Figure 4). By analyzing data from

several different positions, the noise pattern produced could

be used to determine how the noise is radiated and in which

direction most of the noise travels.

In producing the two dimensional spectrum for the

isolated tail rotor, program 1 (see Appendix A) was created

to produce values of the estimate. The tail rotor had a blade

passage frequency of around 450 Hz which was determined by

graphed data (see Figure 5, lines for the shaft frequency are

also present) produced by computer program 2 (see Appendix B).

The motivation for this program was discussed in chapter II.

The blade passage frequency was also verified analytically

using the given test conditions. The passing blades produce

a corresponding periodic acoustic pressure time history with

a fundamental frequency of 450 Hz. It is this time history

from which the sampled data was taken. After the data was

input to program 1 (Appendix A), a set of values were given

in the output for the spectral estimate at frequencies _i and

_2 going from zero to a chosen upper frequency (for us 4800

Hz). We viewed the data and decided that due to the

background noise at low frequencies the scaling of the graph
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did not allow enough of the power at the fundamental frequency

and at harmonics of the tail rotor period to be shown.

Therefore, we decided to filter the data using a Chebyshev

digital filter. All frequencies below 250 Hz were removed,

and a graph of the output data was viewed once again. This

time more detail of the power at the fundamental frequencies

and its harmonics could be seen (see Figures 6,7,8,9).

The graphs show most of the power for the tail rotor at

the fundamental frequency (450 Hz) and the first and second

harmonics (900 and 1350 Hz respectively). There are also

components off the main diagonal which represent the

correlation of the amplitude of sinusoids at frequencies _i

and _2 where _i _ _2-

As for the data sampled from the isolated main rotor time

history, this data is periodic with a frequency of 95 Hz. The

first graphs of this data showed high power levels at around

95 Hz. Since the background noise was also high around 95 Hz,

we decided to filter frequencies below 250 Hz out of this data

also. This resulted in the second harmonic of the main rotor

noise (285 Hz) being dominant. At microphone 3 there is

noticeable power at the third and fourth harmonics also. At

microphone 5 the background tonal noise between 800 and 1300

Hz as reported in [6] is apparent. See figures i0, ii, 12 and

13 for the spectral estimates produced from data taken by

microphones 2 through 5.

The spectrum of the combined noise was of interest due
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to the fact that if noise for the isolated main and tail

rotors is independent, the theory shows that the spectrum for

the combined noise is just the sum of the spectra of the

isolated main and tail rotors. After filtering the low

frequencies as above, it could be seen from figures 14, 15 ,16

and 17 that to some degree the combined noise had a spectrum

which was the sum of the main and tail rotor spectra at

corresponding microphones. However, the question was raised

as to the independence of the noise from the main and tail

rotors when both rotors are operating due to the possibility

of the main rotor wake being swept back into the tail rotor.

We now took another approach. We took the data from the

main rotor and added it directly to the data from the tail

rotor. Then we produced the two dimensional spectrum (see

Figures 18, 19, 20 and 21) for this added noise. As the

theory shows, these spectral estimates are the sum of the

spectra of the isolated main and tail rotors at corresponding

microphones. After comparing spectrums of the added noise to

those of the combined noise, we concluded that there is some

degree of dependence between the noise from the main rotor and

tail rotor when the combined noise is being produced.

It should be noted again that the combined noise is not

periodically correlated. It is the sum of two periodically

correlated processes with incommensurate periods. According

to theory, if the two periodically correlated processes are

independent, the resulting spectrum should equal the sum of
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the spectra of each process. Since the combined noise can

only be blocked with respect to one period, we chose to block

the data with respect to the period of the tail rotor noise.

This will naturally result in the estimated spectrum being

skewed to some degree. However, the same amount of skewing

occurs in the estimated spectrum for the added noise which is

also blocked with respect to the tail rotor noise. Therefore,

the estimated spectrum of the combined and added noise can be

viewed equally with respect to theory.

A. Assumed Stationarity

The standard method for handling data taken from

helicopter noise is to treat the data as if it were

stationary. This results in a one dimensional spectrum along

the _i=_2 diagonal. Therefore, the spectrum excludes all

information concerning correlation of the sinusoidal

amplitudes at frequencies where _i_2. Although these

correlations need further investigation, they can not be

neglected if the spectrum of a nonstationary process is to be

completely studied. Examples of sound pressure spectra, for

the tail rotor produced using this method, are given in

figures 22, 23, 24 and 25. The graphs produced contain 22

degrees of freedom and a frequency resolution of 49 Hz. The

noticeable peaks are the fundamental frequencies and

subsequent harmonics. In the graphs the pressure level drops

off very rapidly. Notable peaks start to drop off after 3000

Hz. Due to the frequency range of audible sound (20 hz to 20
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khz), the ear suggests high tonal levels above 3000 Hz also.

However, this is not evident with this technique.

B. Phase Shifted Data

A periodically correlated process will become stationary

by applying a random phase shift which is uniformly

distributed over the period of the process [7]. This

stationary process can then be adequately analyzed by the

standard me_hod discussed above. This new stationary process

which has been produced is no longer the original process.

And thus, no longer contains information about the correlation

of Fourier components at different frequencies, Hardin and

Miamee [3]. To implement the technique, we take a length of

data and break it into blocks. Each block is of length

necessary to obtain a desired frequency resolution plus the

period of the underlying process. When the program is

implemented, a random function call chooses a sample index

uniformly distributed over the period of the process.

Starting with this value, the program Fourier transforms

enough samples to produce the desired frequency resolution.

This is done for each block of data (see program 3 Appendix

C). This technique results in wastage of sample values from

the start of the record up to the chosen index, but does

implement the random phase shift while maintaining the desired

number of samples per block.

The sound pressure spectra produced from this shifted

data cam be compared to that of the unshifted data one
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dimensional spectra. After viewing the graphs in figures

26,27, 28 and 29, it is apparent that there is significant

power at frequencies above 3000 Hz. The impression which we

get when overlaying graphs of the shifted and unshifted data

is that by not shifting the data, we get a smoothed spectrum

as if a moving average had been applied to the spectrum.

There are additional peaks in the spectrum which appear to

correspond to the shaft frequency. Since the shaft frequency

is one fourth of the blade passage frequency, there could be

three peaks between the harmonics of the spectrum for the tail

rotor noise. This is evident in [6] in which a frequency

resolution of 12 Hz is used. This resolution is fine enough

to show the shaft harmonics. However, our graphs have a

frequency resolution of 50 Hz which is not fine enough to

completely show the shaft harmonics. This technique of

shifting the data appears to be useful in resolving harmonics

of the transformed data, and also rests on a firm theoretical

foundation.

The output resulting from this method was also used in

order to produce a two dimensional spectral estimate. The

graphs for the data taken at microphones 2 through 5 are given

in figures 30, 31, 32 and 33. The graphs contain off diagonal

values which are not to be expected for stationary data. We

suspect that this is due to our limited data length. The time

history could only be broken into eleven blocks in which the

data is shifted. This small amount of data does not suffice
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for a uniform representation over the period of the process,

which is required in order to produce a stationary process

from a PC process.

CONCLUSIONAND RECOMMENDATIONS

In conclusion we feel that we have successfully developed

a method for producing a two dimensional spectral estimate.

This estimate is known to contain more information than the

one dimensional estimate which results from considering

nonstationary data as being stationary. We have shown that

applying a random shift to a periodically correlated process

results in a more useful spectrum for viewing the higher

harmonics when the data is analyzed as stationary. The

harmonics resulting from the standard method discussed above

appear to drop off to quickly.

For further study, we recommend that values off the main

diagonal of the spectral estimate be investigated as to how

their presence can be used to characterize the process itself.
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C234567
INTEGERN,IWK(6150),S,Q
REALA(840),WK(6150)
DIMENSIONP(IO000)
COMPLEXXWT(0:500,11),SXW,SUM,SUM1
COMPLEXX(IOIO)
B_840
S=840
DO6 N-I,10000
READ(I ,*) P(n)

6 CONTINUE
Q=-839
DO40 J=l,ll
Q_Q+840
K-0
DO8 I_Q,Q+839
F-K*I
A(K)-P(I)

8 CONTINUE
CALL FFTRC(A,S,X,IWK,WK)
ND2_S/2

DO 2O I_2,ND2

×(s+2 - 1) _co_u c (x (I))
20 CONTINUE

DO 50 I_I,B/2.1

X_,,T(I-i,J)_X(I)
50 CONTINUE

40 CONTINUE

DO 90 Q-O,IO0

DO I01 M-O,100

SU_.I_(O. 0,0.0)

DO 70 J_l,ll

SU_,I=.0011108* (CONJC (XWT (M, J ))*XWT (Q, J ))+SUM

70 CONTINUE

SUHI_SUM/II. 0

_:::w-CABS (SUMI )

WI<ITE(6 ,*)M,Q, SXW

lOt CONTINUE

90 CONTINUE

END

Appendix A. 2-D Spectrum
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INTECERN,IWK(IOI52) ,S
REALSUMI,SUM2,SUM]
REALA(3334),WK(IOI52)
DIMENSIONU(IO000)
COMPLEXX(O:1668),SUM
S_3334
DO6 N-I,3334
READ(I,*)U(N)

6 CONTINUE
DO8 I_I,3334

A(I)-U(1)

8 CONTINUE

CALL FFTRC (A, S ,X, IWK,WK)

ND2_S/2

DO 20 IL1,ND2

X(S+2- I)-CONJC(X(1))

20 CONTINUE

DO 7 141, S/2+I

>'(i-i)-x(1)
7 CONTINUE

DO 200 Q-0,100,1

DO i00 P=O,IO0,1

suM=(0.0,0.0)

DO I0 M-O,7

SUH-SUH + X(P+M)*CONJC(X(Q+M))
10 CONTINUE

SUM1- ( ( REAL (SUM) ) **2 ) + ( (A IMAO (SUM) ) **2 )
SUM2-0.0

DO 21 H-0,7

SUM2-SUM2 +((REAL(X(P+M)))**2)

21 CONTINUE

SUH3_O. 0

DO BO t.[_O, 7

SUHB-SUM3 .((REAL(X(Q+M)) )**2)
30 CONTINUE

F-SUHI/(SUH2*SUMB)

C-.35

R=P*(20000.0/1667.0)

W-Q*(20000.0/1667. O)

if (F. ge.C) then

WRITE(6 ,*)R,W

ENDIF

I00 CONTINUE

200 CONTINUE

END

+( (AIMAC (X (P+M)) )**2)

+((AIMAO(X(Q+M)))**2)

Appendix B. Spectral Coherence
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C234567

INTECER N,IWK(6150),S,Q

REAL A(820),WK(6150)

DIMENSION P(IO000)

COMPLEX XWT(O: 500,11) ,SX,SUM,SUMI

COblPLEX X(1010)

B_820

S_820

DO 6 N-I,IOO00

READ(I,*)P(n)

6 CONTINUE

Q--907

DO 40 J-l,ll

Q-Q-t908

K_R,_N (Q) *89

N-O

DO 8 I-Q,Q_907

N_N+I

IF(N.LE. $20)THEN

K_K+ 1

A(N)=P(K)

ENDIF

8 CONTINUE

CALL FFTRC (A,S,X,IWK,WK)

ND2-S/2

DO 20 I_2.ND2

X(S.2-1)=CONJC(X(I))

20 CONTINUE

DO 50 I-I,B/2+I

XWT(I-I,J)=X(1)

50 CONTINUE

40 CONTINUE

DO i01 M=O,IO0

SUM=(O.O,O.O)

DO 70 J_l,ll

SUM=. 0011108- (CONJC (XWT (M,_]))*XWT (M, J ))+SUM

70 CONTINUE

SX_SUM/II.O

SXW-REAL(SX)

C_SXW

SPL=IO*LOCIO(C)+74

R_bl*(20000/410)

WRITE(6,*)R,SPL

i01 CONTINUE

F!][i
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A TWO DIMENSIONAL POWERSPECTRALESTIMATE

FOR SOMENONSTATIONARYPROCESSES
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A two dimensional spectral estimate for a nonstationary

process is developed. It addresses the need for modelling

phenomena which exhibit nonstationary behavior. Currently

these phenomena are usually modelled as stationary processes.

The spectrum of a nonstationary process is two dimensional

while the spectrum of stationary processes is one dimensional

Therefore, these phenomena are not as completely represented

when modelled as stationary processes. The usual method of

analyzing nonstationary processes as if they were stationary

is compared to the two dimensional estimate which has been

developed. In addition, a random phase shift which as the

theory shows should produce a stationary process, is

introduced to our nonstationary process. This stationary

process can then be analyzed in the usual way. The results

are compared with the methods described above.


